Anyone who studied a little genetics in high school has heard of adenine, thymine, guanine and cytosine – the A,T,G and C that make up the DNA code. But those are not the whole story. The rise of epigenetics in the past decade has drawn attention to a fifth nucleotide, 5-methylcytosine (5-mC), that sometimes replaces cytosine in the famous DNA double helix to regulate which genes are expressed. And now there's a sixth. In experiments to be published online Thursday by Science, researchers reveal an additional character in the mammalian DNA code, opening an entirely new front in epigenetic research.The work, conducted in Nathaniel Heintz's Laboratory of Molecular Biology at The Rockefeller University, suggests that a new layer of complexity exists between our basic genetic blueprints and the creatures that grow out of them. "This is another mechanism for regulation of gene expression and nuclear structure that no one has had any insight into," says Heintz, who is also a Howard Hughes Medical Institute investigator. "The results are discrete and crystalline and clear; there is no uncertainty. I think this finding will electrify the field of epigenetics."Genes alone cannot explain the vast differences in complexity among worms, mice, monkeys and humans, all of which have roughly the same amount of genetic material. Scientists have found that these differences arise in part from the dynamic regulation of gene expression rather than the genes themselves. Epigenetics, a relatively young and very hot field in biology, is the study of nongenetic factors that manage this regulation.One key epigenetic player is DNA methylation, which targets sites where cytosine precedes guanine in the DNA code. An enzyme called DNA methyltransferase affixes a methyl group to cytosine, creating a different but stable nucleotide called 5-methylcytosine. This modification in the promoter region of a gene results in gene silencing.